

Welcome to vexbot’s documentation!

Contents:

	Extension Development
	Foreword

	Setup a Packging Environment

	Extensions Development

	Extension Management
	See Current Commands

	See Extensions In Use

	Remove Extensions In Use

	See Installed Extensions

	See Installed Modules

	Add Extensions

	Extension Discovery
	See Installed Extensions

	See Installed Modules

	Adapter Development
	Create A New Adapter

	Adapter Configuration
	Configuring ZMQ Addresses

	Packages
	Optional Packages

Installation

You will need an active DBus user session bus. Depending on your distro, you might already have one (Arch linux, for example).

For Ubuntu:

$ apt-get install dbus-user-session python3-gi python3-dev python3-pip build-essential

For everyone:

$ python3 -m venv <DIR>

$ source <DIR>/bin/activate

$ ln -s /usr/lib/python3/dist-packages/gi <DIR>/lib/python3.5/site-packages/

$ pip install vexbot[process_manager]

Make sure your virtual environment is activated. Then run:

$ vexbot_generate_certificates

$ vexbot_generate_unit_file

$ systemctl --user daemon-reload

Your bot is ready to run!

Running

$ systemctl --user start vexbot

Or

$ vexbot_robot

Please note that vexbot has a client/server architecture. The above commands will launch the server. To launch the command line client:

$ vexbot

Exit the command line client by typing !exit or using ctl+D.

Indices and tables

	Index

	Module Index

	Search Page

Extension Development

Foreword

Currently extensions are tied very closely to python’s packaging ecosystem. This is unlikely to change, honestly.

Setup a Packging Environment

$ # Note that the directory these commands are run from is `~/my_vexbot_extensions`!

$ mkdir my_vexbot_extenstions
$ cd my_vexbot_extensions

Create a setup.py file.

filepath: my_vexbot_extensions/setup.py
from setuptools import setup

setup(name='my_vexbot_extensions')

Now take a breather. Python packaging is hard, and we’re almost done!

Extensions Development

Done with your breather? Good. Now let’s say we’ve got a hello_world function that we want to use such as the below.

filepath: my_vexbot_extensions/hello_world.py

def hello(*args, **kwargs):
 print('Hello World!')

Dope. Let’s add this as an extension in our setup.py file.

filepath: my_vexbot_extensions/setup.py
from setuptools import setup

setup(name='my_vexbot_extensions',
 entry_points={'vexbot_extensions':['hello=hello_world:hello'])

That’s it. Let’s make sure the package is installed on our path. Make sure you’re in the directory my_vexbot_extensions (or whatever you named your folder).

$ # Note that the directory these commands are run from is `~/my_vexbot_extensions`!

$ ls
setup.py hello_world.py

$ python setup.py develop

You might say, wait, that’s not a normal python packaging structure! And you’d be right, so let’s look at how it’ll change for that. We’ll make a directory called my_src and create a file in there known as goodbye_world.py

filepath: my_vexbot_extensions/my_src/goodbye_world.py

def angsty(*args, **kwargs):
 print('Goodbye, cruel world!')

Note how I’m taking an arbitrary amount of arguments and key word arguments using *args and **kwargs [https://stackoverflow.com/questions/3394835/args-and-kwargs]? You should do that for every extension, or your program will error out at somepoint when it gets called with metadata that it’s not ready for.

filepath: my_vexbot_extensions/my_src/goodbye_world.py

def angsty(*args, **kwargs):
 print('Goodbye, cruel world!')

Note: Do NOT make extensions without using `*args, **kwargs`
def function_that_will_fail_on_metadata():
 print('Please notice the lack of flexibility in this function for taking arguments')
 print('This type of extension will inevitabley throw `TypeError` exceptions if put in a codebase')

But back to registering our extension in our setup.py file. Remember that the filepath for this is my_vexbot_extensions/my_src/goodbye_world.py.

filepath: my_vexbot_extensions/setup.py
from setuptools import setup

setup(name='my_vexbot_extensions',
 entry_points={'vexbot_extensions':['hello=hello_world:hello',
 'angsty=my_src.goodbye_world:angsty'])

Notice how we use the . operator to represent the folder directory, and the : to specify the method name? That’s important.

We can have multiple methods in a file that way.

filepath: my_vexbot_extensions/my_src/goodbye_world.py

def angsty(*args, **kwargs):
 print('Goodbye, cruel world!')

def crocodile(*args, **kwargs):
 print('Goodbye, crocodile!')

filepath: my_vexbot_extensions/setup.py
from setuptools import setup

setup(name='my_vexbot_extensions',
 entry_points={'vexbot_extensions':['hello=hello_world:hello',
 'angsty=my_src.goodbye_world:angsty',
 'crocodile=my_src.goodbye_world:crocodile'])

If you have a deeply python nested file, such as one in my_vexbot_extensions/my_src/how/deep/we/go.py…
.. code-block:: python

filepath: my_vexbot_extensions/setup.py
from setuptools import setup

	setup(name=’my_vexbot_extensions’,

	
	entry_points={‘vexbot_extensions’:[‘hello=hello_world:hello’,

	‘angsty=my_src.goodbye_world:angsty’,
‘crocodile=my_src.goodbye_world:crocodile’,
‘nested_func=my_src.how.deep.we.go:waay_to_much’])

Note that each folder is separated by the . operator, and the function name in the above example is waay_to_much, which is how deeply I feel that function is nested for a simple example such as this.

Remember, remember the 5th of November.
And also to re-run python setup.py develop once you’ve added an entry point/extension to your setup.py file.

$ # Note that the directory these commands are run from is `~/my_vexbot_extensions`!

$ ls
setup.py hello_world.py my_src

$ python setup.py develop

The string used before the path decleration, I.e the nested_func in the string nested_func=my_src.how.deep.we.go:waay_to_much is the name you will use in vexbot itself or the hello in hello=hellow_world:hello.

Let’s add our hello world greeting to our command line interface.

$ vexbot

vexbot: !add_extensions hello
vexbot: !hello
Hello World!

You can also add the hello world to the robot instance as well.

$ vexbot

vexbot: !add_extensions hello --remote

Last, but not least, you can specify command name alias’s, specify if the command should be hidden, and give a short description for what the command does by using the command decorator.

filepath: my_vexbot_extensions/hello_world.py
from vexbot.commands import command

@command(alias=['hello_world', 'world_hello'],
 hidden=True, # default is `False`
 short='Prints `Hello World`!')
def hello(*args, **kwargs):
 print('Hello World!')

Extension Management

For the most part it’s assumed that you are running in the command line program for this documentation.

$ vexbot

vexbot:

See Current Commands

vexbot: !commands

See bot commands

vexbot: !commands --remote

See Extensions In Use

vexbot: !extensions

From bot:

vexbot: !extensions --remote

Remove Extensions In Use

Let’s say you’ve the get_cache (shows you your configuration cache) and the cpu_count extensions in use and you’d like to remove them.

vexbot: !remove_extension get_cache cpu_count

Alternatively just removing one:

vexbot: !remove_extension get_cache

See Installed Extensions

Installed extensions are on your path, but not neccesairly attached to anything running currently

vexbot: !get_installed_extensions

This command displays a list of every extension installed with a short doc string on what it does.

For example, the command power_off will be displayed as

‘power_off: Power off a digital ocean droplet’

You can also use a module name to see all the extensions that are provided by that module. vexbot.extensions.subprocess is an installed module for vexbot. To see all the extensions that are provided by that module:

vexbot: !get_installed_modules vexbot.extensions.subprocess

See Installed Modules

There are a lot of installed extensions and it’s hard to figure out what each one does.
You can break them up into modules

vexbot: !get_installed_modules

This is helpful because the installed modules can be used with the get_installed_extensions to narrow down what is shown. For example, the every extensions in the module vexbot.extensions.digitalocean can be shown by using the following command:

vexbot: !get_installed_modules vexbot.extensions.digitalocean

Add Extensions

vexbot: !add_extensions get_code delete_cache

To add commands to the robot instance:

vexbot: !add_extensions get_code delete_cache --remote

Extension Discovery

See Installed Extensions

Installed extensions are on your path, but not neccesairly attached to anything running currently

vexbot: !get_installed_extensions

This command displays a list of every extension installed with a short doc string on what it does.

For example, the command power_off will be displayed as

‘power_off: Power off a digital ocean droplet’

You can also use a module name to see all the extensions that are provided by that module. vexbot.extensions.subprocess is an installed module for vexbot. To see all the extensions that are provided by that module:

vexbot: !get_installed_modules vexbot.extensions.subprocess

See Installed Modules

There are a lot of installed extensions and it’s hard to figure out what each one does.
You can break them up into modules

vexbot: !get_installed_modules

This is helpful because the installed modules can be used with the get_installed_extensions to narrow down what is shown. For example, the every extensions in the module vexbot.extensions.digitalocean can be shown by using the following command:

vexbot: !get_installed_modules vexbot.extensions.digitalocean

Adapter Development

Create A New Adapter

Create a messaging instance and pass in a service name that will uniquely identify it.

from vexbot.adapters.messaging import Messaging

messaging = Messaging('unique_service_name', run_control_loop=True)
messaging.run(blocking=False)
Your messaging code here

Some sort of loop, using a `while` loop for illustration purposes
while True:
 author = ''
 message = ''
 # optional
 # channel = ''

 messaging.send_chatter(author=author,
 message=message)

 # NOTE: Alternate implementation
 """
 messaging.send_chatter(author=author,
 message=message,
 channel=channel)
 """

Dope. But what about something that sends commands to the robot?

from vexbot.adapters.messaging import Messaging

messaging = Messaging('unique_service_name', run_control_loop=True)
messaging.run(blocking=False)

Your code here. You would probably want this in a loop as well.
command = ''
args = []
kwargs = {}

messaging.send_command(command, *args, **kwargs)

You probably want a response back out of that command, huh?

from vexbot.observer import Observer
from vexbot.adapters.messaging import Messaging

class MyObserver(Observer):
 def on_next(self, request):
 result = request.kwargs.get('result')
 # your code here

 def on_error(self, *args, **kwargs):
 pass

 def on_completed(*args, **kwargs):
 pass

messaging = Messaging('unique_service_name', run_control_loop=True)
messaging.run(blocking=False)

my_observer = MyObserver()

messaging.command.subscribe(my_observer)
You can also pass in methods to the `subscribe` method
messaging.command.subscribe(your_custom_method_here)

Actually you probably want the ability to dynamically load commands, persist your dynamic commands, and see all the installed commands available.

import shelve
from os import path
from vexbot.observer import Observer
from vexbot.extensions import extensions

from vexbot.util.get_cache_filepath import get_cache
from vexbot.util.get_cache_filepath import get_cache_filepath as get_cache_dir

class MyObserver(Observer):
 extensions = (extensions.add_extensions,
 extensions.remove_extension,
 # NOTE: you can pass in dict's here to change the behavior
 {'method': your_method_here,
 'hidden': True,
 'name': 'some_alternate_method_name',
 'alias': ['method_name2',
 'method_name3']},

 extensions.get_extensions,
 extensions.get_installed_extensions)

 def __init__(self):
 super().__init__()
 self._commands = {}
 cache_dir = get_cache_dir()
 mkdir = not path.isdir(cache_dir)
 if mkdir:
 os.makedirs(cache_dir, exist_ok=True)

 filepath = get_cache(__name__ + '.pickle')
 init = not path.isfile(filepath)

 self._config = shelve.open(filepath, flag='c', writeback=True)

 if init:
 self._config['extensions'] = {}
 self._config['disabled'] = {}
 self._config['modules'] = {}

 # NOTE: Here's our command handeling
 def handle_command(self, command: str, *args, **kwargs):
 callback = self._commands.get(command)
 if callback is None:
 return

 # Wrap our callback to catch errors
 try:
 result = callback(*args, **kwargs)
 except Exception as e:
 self.on_error(command, e, args, kwargs)

 print(result)

 def on_next(self, request):
 # NOTE: Here's our responses back from the bot
 result = request.kwargs.get('result')
 # your code here

 def on_error(self, *args, **kwargs):
 pass

 def on_completed(*args, **kwargs):
 pass

>> observer = MyObserver()
>> observer.handle_command('get_extensions')
>> []
>> observer.handle_command('add_extensions', 'log_level')
>> observer.handle_command('get_extensions')
>> ['log_level']

Adapter Configuration

There are two things that need to be configured for most adapters. The .service file which systemd uses to launch the service, and an option configuration file, which can be used to pass in configurations that need to be persisted.

See this link [https://github.com/benhoff/vexbot/tree/master/config] for example configurations for the packaged adapters. And the below for a primer on ZMQ addresses, if you desire to change the configuration of anything from running locally on the loopback address.

Please note that the .service files should be put in ~/.config/systemd/user/*. The .ini files may be placed almost anywhere, as long as they are referred to properly in the .service file, but recommend they be placed in !/.config/vexbot/* for consistency.

Configuring ZMQ Addresses

Addresses can be configured for the adapters and the bot itself in the .ini files. This is a bit more advanced and probably not recommended.

The address expected is in the format of tcp://[ADDRESS]:[PORT_NUMBER].

For example tcp://127.0.0.1:5617 is a valid address. 127.0.0.1 is the ADDRESS and 5617 is the PORT_NUMBER.

127.0.0.1 was chosen specifially as an example because for IPV4 it is the “localhost”. Localhost is the computer the program is being run on. So if you want the program to connect to a socket on your local computer (you probably do), use 127.0.0.1.

Port numbers range from 0-65536, and can be mostly aribratry chosen. For linux ports 0-1024 are reserved, so best to stay away from those. Port 5555 is usually used as an example port for coding examples, so probably best to stay away from that as well.

The value of the publish_address and subscribe_address at the top of the settings file are likely what you want to copy for the publish_address and subscribe_address under shell, irc, xmpp, youtube, and socket_io if you’re running everything locally on one computer. But you don’t have to. You could run all the services on one computer and the main robot on a different computer. You would just need to configure the address and ports correctly, as well as work through any networking/port issues going across the local area network (LAN).

Packages

+===================+=========+
| required packages | License |
+===================+=========+
| vexmessage | GPL3 |
+——————-+———+
| pyzmq | BSD |
+——————-+———+
| rx | Apache |
+——————-+———+
| tblib | BSD |
+——————-+———+
| tornado | Apache |
+——————-+———+

Optional Packages

+==================+=========+
| nlp | License |
+==================+=========+
| spacy | |
+——————+———+
| sklearn | |
+——————+———+
| sklearn_crfsuite | |
+——————+———+
| wheel | |
+——————+———+

+==================+=========+
| socket_io | License |
+==================+=========+
| requests | |
+——————+———+
| websocket-client | |
+——————+———+

+===============+=========+
| summarization | License |
+===============+=========+
| gensim | |
+—————+———+
| newspaper3k | |
+—————+———+

+==========================+=========+
| youtube | License |
+==========================+=========+
| google-api-python-client | |
+————————–+———+

+========+=========+
| dev | License |
+========+=========+
| flake8 | |
+——–+———+
| twine | |
+——–+———+
| wheel | |
+——–+———+

+===========+=========+
| xmpp | License |
+===========+=========+
| sleekxmpp | |
+———–+———+
| dnspython | |
+———–+———+

+==============+=========+
| process_name | License |
+==============+=========+
| setproctitle | |
+————–+———+

+==============+=========+
| speechtotext | License |
+==============+=========+
| speechtotext | |
+————–+———+

+=================+=========+
| process_manager | License |
+=================+=========+
| pydus | |
+—————–+———+

+=================+=========+
| gui | License |
+=================+=========+
| chatimusmaximus | |
+—————–+———+

+======+=========+
| irc | License |
+======+=========+
| irc3 | |
+——+———+

+============+=========+
| microphone | License |
+============+=========+
| microphone | |
+————+———+

+==============+=========+
| speechtotext | License |
+==============+=========+
| speechtotext | |
+————–+———+

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to vexbot’s documentation!

 		
 Extension Development

 		
 Foreword

 		
 Setup a Packging Environment

 		
 Extensions Development

 		
 Extension Management

 		
 See Current Commands

 		
 See Extensions In Use

 		
 Remove Extensions In Use

 		
 See Installed Extensions

 		
 See Installed Modules

 		
 Add Extensions

 		
 Extension Discovery

 		
 See Installed Extensions

 		
 See Installed Modules

 		
 Adapter Development

 		
 Create A New Adapter

 		
 Adapter Configuration

 		
 Configuring ZMQ Addresses

 		
 Packages

 		
 Optional Packages

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

